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Abstract 

In intervention studies, it is important to assess whether one program might be more 
effective for individuals with extreme initial difficulties, while another might be more 
effective for individuals with less extreme initial difficulties. In settings where we obtain 
time-series data for each person, this entails examining interactions between treatment 
and initial status on rates of change. In this report, we illustrate a fully Bayesian 
approach to studying interactions of this kind in the Hierarchical Modeling (HM) 
framework. This approach provides data analysts with a number of important 
advantages, including the ability to handle situations in which the number and spacing 
of time-series observations varies substantially across individuals, and the ability to 
obtain robust estimates of parameters of interest. Various extensions of our approach are 
discussed in detail. 

Many key questions in educational research, and in social and 
behavioral research more generally, entail measuring and studying 
change. In this connection, growth modeling techniques provide a 
valuable means of studying patterns of change over time (see, for 
example, Bryk & Raudenbush, 1987; Muthen, 1991). 

Key substantive questions in studies of change often center on 
relationships between where individuals start (e.g., their initial status) and 
how rapidly they progress (e.g., their rates of change) (see Muthen & 
Curran, 1997; Khoo, 1997; Blomqvist, 1977). For example, in studying the 
effectiveness of two remedial reading programs over time, it becomes 
important to consider whether one program might be more effective for 
students with extreme reading difficulties, while the other program might 



be more successful in the case of students with milder initial reading 
difficulties. Thus, among students with extreme reading difficulties, rates 
of progress may be more rapid for students in Program A, whereas among 
students with milder difficulties, rates of progress may be more rapid for 
students in Program B (see Figure 1). We term phenomena of this kind 
Initial Status x Treatment interactions. 
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Figure 1. Growth Trajectories for Scenario A 

9 

As a second example, consider studying change in outcomes of 
interest in the context of large-scale educational surveys. In analyses of 
data from the National Longitudinal Survey of Youth (NLSY), for 
example, interest might center on how differences in initial status in anti- 
social behavior ( A S B )  relate to differences in rates of change in A S B :  How 
much of a change in A S B  growth rates do we expect when initial status 
increases 1 unit? Furthermore, interest might also center on how 
differences in various demographic characteristics (e.g., gender) and home 
environment factors, for example, correlate to differences in rates of 
change in A S B .  It may well be the case that the effects of these factors 
depend crucially on (i.e., interact with) initial status. 

Specifying models to address questions of this kind in essence 
implies modeling individual growth rate parameters (Zli) as a function of 
individual initial status parameters (mi). Thus, for example, questions 
centering on Initial Status x Treatment interactions imply models for 
growth rate parameters of the following general form: 

Z1i = f (mi, TRTi, mi x TRTi) 

6 2 



Viewing individual growth parameters as latent variables, the use 
of mi as a predictor of nli moves us into the arena of latent variable 
regression. Wlule statistical analyses commonly are conducted using 
fallible measures of constructs of interest, a hallmark of Structural 
Equation Modeling (SEM) is that it provides a framework for specifying 
relationships among latent variables. As such, SEM provides an approach 
to growth modeling that enables us to employ initial status parameters as 
predictors of growth rates. SEM can be readily applied in settings in 
which we wish to specify Initial Status x Treatment interactions (e.g., mi x 

TRTi, where TRTi is a 0/1 indicator variable), as well as situations in which 
interactions between mi and other predictors of growth are not specified 

One limitation in current implementations of SEM is that our data 
must be time-structured. Thus, for example, the series of ages at whch 
children in a developmental study are observed must be similar across 
children. 

A second limitation that is less germane to the focus of h s  article is 
that it is not possible in standard implementations of SEM to specify 
interactions between initial status and continuous predictors of change. 
For example, consider an intervention study in which a key 
implementation variable is measured on a continuous scale. In settings of 
this kind, one would not be able to study interactions between initial 
status and implementation on rates of change. 

easily handle data sets that are not time-structured, i.e., settings in which 
the number and spacing of time series observations may vary across 
individuals. But unlike SEM, latent variable regression is not a hallmark 
of the HM framework. 

In an important extension of the HM framework, Raudenbush and 
Sampson (1999) present a strategy for incorporating latent variable 
regressions into HMs. This strategy has been implemented in the latest 
release of the HLM software program. In its current implementation, t h s  
strategy enables one to employ initial status as a predictor of growth rates, 
but only in settings in whch interactions between initial status and other 
predictors of change are not specified. A potentially valuable application 
of t h s  approach would be intervention settings in which assignment to 
treatment and comparison groups is not random. One could, using this 
approach, study the effects of treatment on rates of change holding 
constant initial status (e.g., nli =j(mi ,  TRTi)). Rather than adjusting with 
respect to observed outcome scores at time 1, whch contain measurement 

(e.g., xli =f(ROi, TRTi)). 

0 

In contrast to SEM, the hierarchical modeling (HM) framework can 
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error, the adjustment would be based on a latent variable. Note that 
models of ths kind can be fit readily via SEM. 

In principle, the strategy presented by Raudenbush and Sampson 
could be extended to settings in which we wish to specify Initial Status x 
Treatment interactions. f i s  would require the specification and 
estimation of separate variance-covariance matrices for the treatment and 
comparison groups. However, Raudenbush and Sampson's approach 
entails transforming ML estimates of variance components and fixed 
effects in standard HMs. As such, it appears that this strategy could not 
be extended to settings in which we wish to specify interactions between 
initial status and continuous predictors. 

In fitting statistical models under normality assumptions, results 
are potentially vulnerable to outlying cases. Thus point estimates and 
standard errors for coefficients in latent regression models in both the 
SEM and HM frameworks may be non-robust to outlying individuals 
(e.g., a person whose rate of growth is unusually rapid). In addition, both 
the SEM framework and the strategy outlined by Raudenbush and 
Sampson, inferences are based on large-sample theory. Thus the use of 
these approaches in growth modeling settings in which the number of 
individuals is small or moderate may not be prudent. 

In this paper, we present a fully Bayesian approach to latent 
variable regression in the HM framework. This approach entails 
calculating marginal posterior distributions of interest via a key Markov 
chain Monte Carlo (MCMC) technique, i.e., the Gibbs sampler. Our 
approach has the following strengths. First, it can be used to analyze data 
that are not time-structured. Secondly, it enables one to specify Initial 
Status x Treatment interactions. n r d ,  it enables one to employ t 
distributional assumptions at any level of the HM, whch has the effect of 
downweighting outliers. Note that the term outliers as used here refers 
both to outlying time-series observations (e.g., a time-series observation 
for an individual that is unusually high or low given the overall trend in 
that person's data), and to outlying individuals (e.g., a person whose rate 
of change is unusually rapid or slow in relation to other individuals). 
Fourth, inferences in the approach that we employ are not based on large- 
sample approximations. Fifth, rather than transforming estimates of fixed 
effects and variance components in standard HMs to obtain estimates of 
coefficients in latent variable regressions, our approach entails estimating 
these coefficients directly. f i s  makes possible a number of useful 
modeling extensions which we discuss at the end of our paper (e.g., 
interactions between initial status and continuous predictors of growth). 



Our fully Bayesian approach to latent variable modeling in the HM 
framework can be easily implemented using the software program BUGS 
(Spiegelhalter et al., 1996a), which is a near acronym for "Bayesian 
analysis Using the Gibbs Sampler". We illustrate our approach through 
analyses of the data from a randomized trial comparing two forms of 
short-term psychotherapy (see Svartberg, Seltzer & Stiles, 1998). The 
implications of our approach for the study of educational interventions 
and for constructing educational indicators are discussed at the end of our 
paper. 

Illustrative Example 

Background 

From. a pool of 20 individuals referred for short-term 
psychotherapy, 10 were randomly assigned to a directive, psychodynamic 
form of therapy termed STAPP, and 10 were randomly assigned to a non- 
directive form of therapy (NDP) (see Svartberg et al., 1998). A key 
outcome of interest in this study is level of client distress as measured by 
an instrument termed the Symptom Checklist-90 (SCL-90; Derogatis, 
1977). Note that on the SCL-90 scale, scores between 0 and 0.20 indicate 
that an individual is asymptomatic; scores between 0.20-0.40 indicate 
mild levels of distress; scores between 0.40-1.00 indicate moderate levels 
of distress; and scores exceeding 1.00 indicate severe symptomology. 
Efforts were made to measure levels of distress at multiple points in time: 
immediately prior to the start of treatment, after 10 sessions, at 
termination, and 6, 12 and 24 months after termination. In our analyses, 
we focus on SCL-90 scores from the pre-intervention, 10-th session, and 
termination measurement occasions. See Svartberg et al. (1998) for a set of 
analyses that includes the post-intervention time points. 

For both groups, treatment was to last for 20 sessions. However, 
for ethical reasons, treatment was prolonged in the case of one client for 32 
sessions (client 9). This patient was assessed pretreatment, and at sessions 
10, 20, and 32. In addition, one patient had only 14 sessions (client 2), and 
was assessed pretreatment and at sessions 10 and 14. 

As in Svartberg et al. (1998), the carrier of time in our analyses of 
change is measured in units of months: MONTHti, where MONTHti 
captures the number of months that 
treatment for person i at measurement 

have elapsed since the start of 
occasion t. Due to cancellations, 
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changes in schedules, patient and therapist vacations, and extensions of 
treatment in the case of 1 patient, MONTHti takes on 57 different values 
ranging from 0.00 to 17.8 months, where 0.00 is the time-value 
corresponding to the pre-intervention measurement occasion. Thus the 
spacing between time-points varies considerably across patients. In 
addition, the duration of treatment ranges from 4.8 to 17.8 months. The 
average duration and median duration of treatment take on values of 
approximately 9 months and 8.8 months, respectively. 
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Figure 2A. Individual Growth Trajectories 
for StAPP Patients 
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Figure 28. Individual Growth Trajectories 
for NDP Patients 

The trajectories of SCL-90 scores for the clients in the STAPP group 
and the clients in the NDP group are displayed in Figures 2a. and 2b., 
respectively. Note that at the outset, virtually all patients have SCL-90 
scores that indicate moderate or high levels of distress. A key feature of 
these trajectories is that in general, SCL-90 scores tend to decrease over 
time in a fairly linear fashion. Three exceptions to this pattern are the 
trajectories for clients 9/17 and 19. 

We will first fit a growth model without latent variable predictors 
to the data in order to examine overall differences between STAPP and 
NDP patients in their initial status and rates of change. We will then 
employ initial status as a predictor of change and assess differences 
between STAPP and NDP patients in their rates of change holding 
constant initial status. Finally, we will examine whether the relative 



effectiveness of STAPP and NDP on rate of change interacts with initial 
status. 

Model I 
We begin by specifying the following level-1 (or within-child) 

model: 

where Yti represents the SCL-90 score for individual i (i=l, ...., I )  at 
measurement occasion t (t=l, . . .., Ti), and MONTHti captures the number 
of months that have elapsed since the start of treatment for person i at 
measurement occasion t. In this model, mi represents the SCL-90 status 
for person i at the start of treatment (i.e., initial status), and nli is the rate of 
change during treatment for person i. The &ti (i.e., the level-1 residuals) are 
assumed normally distributed with mean 0 and variance 02. 

We now pose the following level-2 (or between-child) model: 

mi = POO + POI TRTi + Uoi Uoi ,.. N (0, ZOO) 

Uli - N (0, TII), 'TCI~ = P i 0  + P i 1  TRTi + U1i (3) 

where TRTi = 0 if client i receives the STAPP treatment, and TRTF1 if 
client i receives the NDP treatment. By virtue of this coding scheme, Boo 

represents the expected initial status for STAPP patients, and Poi captures 
the overall difference in initial status between NDP and STAPP patients. 
Although random assignment was employed in this study, the number of 
patients in each group is small. Thus results for Po i  provide us with a 
check on the comparability of patients in the two treatment groups. 
Turning to the level-2 equation for growth rates, P i 0  represents the 
expected rate of change in SCL-90 scores for STAPP clients, and Pi1 

captures the overall difference in rates of change between NDP and 
STAPP patients. The Uoi and U1i are level-2 residuals (i.e., random effects) 
assumed normally distributed with mean 0, and variance zoo and 211, 

respectively. Note that zoo captures the variance in initial status that 
remains after taking into account treatment group membership. Similarly, 
zii captures the residual variation in growth rates. Furthermore, Cov( Uoi, 
Uii) = z01, where 701 is the covariance between initial status and rate of 
change for patients within each of the treatment groups. 



Estimation 

One widely used approach to estimation and inference for HMs is 
termed full maximum likelihood. This entails jointly estimating the fixed 
effects and variance components in an HM via maximum likelihood. 
Asymptotic standard errors are based on the Fisher information matrix. A 
second commonly used approach entails computing maximum likelihood 
estimates of the variance components in a given model, which is termed 
restricted maximum likelihood (REML) estimation. Generalized Least 
Squares is then used to obtain estimates and standard errors for the fixed 
effects. In this step, the variance-covariance parameters in the HM are set 
equal to their REML estimates. 

In growth modeling settings in which the number of individuals is 
small, the above approaches can result in underestimates of uncertainty 
(e.g., standard errors that are too small), and point estimates that may 
constitute poor summaries of the data (see, e.g., Draper (1995), Rubin 
(1981) and Seltzer, Wong & Bryk (1996)). Note, however, that with respect 
to hypothesis tests for fixed effects, the HLM program employs critical 
values based on the family of t distributions. With the exception of 
settings in which datasets are highly unbalanced, this approach will tend 
to provide appropriate rejection rates. 

The fully Bayesian approach entails basing inferences on the 
marginal posterior distributions of parameters of interest (e.g., p(p11 I y)). 
Such an approach involves specifying prior distributions for all unknowns 
in one's model. To obtain the marginal posterior distribution of a 
particular parameter, one must integrate over all other unknowns in one's 
model. Thus, for example, ~ ( 6 1 1  ly) would provide us with a summary of 
the plausibility of different values for p(pii I y) given the data at hand and 
any available prior information. The mode, median and mean of p(Pii ly) 
would provide us with various point estimates for pi1 and the .025 and 
.975 quantiles of this distribution would provide us with the Bayesian 
analogue of a confidence interval. 

An advantage of the fully Bayesian approach is that it provides a 
general strategy for drawing inferences concerning a parameter of interest 
in a manner that takes into account the uncertainty connected with all 
other unknowns in one's model. For example, in drawing inferences 
concerning p11, integrating over the variance components as well as all 
other unknowns in effect propagates the uncertainty concerning these 
parameters into p(pii I y) (see, e.g., Draper (1995), Rubin, 1981, and Seltzer 
et al. (1996)). 



Calculating marginal posteriors of interest has until recently been 
intractable in all but the simplest HM settings. However, MCMC 
techniques (e.g., the Gibbs sampler) now make such an approach feasible 
in a wide range of complex modeling settings (see, e.g., Carlin & Louis, 
1996; Gelfand, Hills, Racine-Poon & Smith, 1990; Gelman, Carlin, Stern & 
Rubin, 1995; Seltzer et al., 1996; Spiegelhalter et al., 1996b, 1996c; Tanner, 
1996). As will be seen, MCMC can be used to obtain marginal posteriors 
of interest in HMs in which level-1 parameters (e.g., mi) are employed as 
predictors at level-2, and in which t distributional assumptions are 
employed at any level of the model. Rather than transforming ML 
estimates of variance components and fixed effects in standard HMs to 
obtain estimates of coefficients in latent variable regressions, a distinct 
advantage in using MCMC is that these coefficients can be estimated 
directly. This makes possible a number of important extensions of our 
approach, which will be discussed at the end of our paper. 

We used the software package BUGS to carry out all of the fully 
Bayesian analyses presented in this paper. BUGS, which is freely 
available via the Web, provides a relatively easy means of implementing 
the Gibbs sampler in a wide array of modeling settings. We ran the BUGS 
package on a Pentium I1 400mhz PC. For each analysis, less than 15 
seconds of CPU time were required to complete 10,000 iterations of the 
Gibbs sampler. 

To diagnose possible convergence problems, for each analysis we 
ran multiple chains of the Gibbs sampler using different starting values 
and seeds, compared results based on the output from each chain, 
inspected trace plots, and examined Raftery-Lewis statistics. These 
procedures failed to identify any convergence problems. Note that trace 
plots, Raftery-Lewis statistics and a number of other useful convergence 
diagnostics can be obtained using a suite of programs called CODA (Best, 
Cowles & Vines, 1995), which has been made available by the developers 
of BUGS. Like BUGS, CODA is also freely available via the Web. To help 
ensure results with high degrees of accuracy, we employed a burn-in 
period of 2,000 iterations, and used the output from 60,000 subsequent 
iterations of the Gibbs sampler to simulate marginal posteriors of interest. 

We specified diffuse priors for the fixed effects in our models. For 
example, in the case of the fixed effects in Model I, we employed 
independent normal priors with means of 0 and extremely low precision. 
Note that in BUGS, one 
rather than variances (02, 

for precision parameters 

routinely works with precisions (e.g., 1/02, T-I) 
T). The approach that we used to specify priors 
parallels the approach employed in papers by 



Seltzer et al. (1996), Seltzer, Novak, Lim and Choi (2001), and Seltzer and 
Choi (in press) for specifying diffuse priors for variance components. 

Results for Model I 

As can be seen in Table I, the marginal posterior mean of Boo takes 
on a value of 0.87, which falls just below the lower boundary of the high 
distress category. The mean of the resulting marginal posterior 
distribution for poi (i.e., the expected difference in initial status between 
NDP and STAPP patients) is slightly under a tenth of a point, and the 95% 
interval based on this distribution comfortably includes a value of 0. 
Thus, on average, the NDP and STAPP patients appear to be fairly similar 
in terms of initial levels of distress. 

Table I: Marginal Posterior Distributions for the Fixed Effects and Variance Components 
in Model I. 

Mean SD 95% Int. Median Prop.>O 

Fixed Effects : 

Model for Initial Status ( n d  
STAPP ( p o o )  .874 .138 ( .596,1.145) .875 1.000 

NDP/STAPP Contrast (pol)  .088 .197 (-.305, .477) .090 .681 

Model for Rates of Change (nli) 

STAPP (pie) - .070 .020  (-.109,-.032) -.070 .OOO 

NDP/STAPP Contrast (pll) -.002 .026 (-.053, .049) - . O O 2  .473 

Variance Components : 

Within-Person Error (0’) .060 .017 ( .035, .loo) .057 

Random Effects Variance 
for Initial Status ( T ~ ~ )  .149 .065 ( .063, .308) .136 

Random Effects Variance 
for Rates of Change (q1) .002 .001 ( .001, .004) .002 

Cov. between Init. Status 
and Rates of Chagne(Tol) -.007 .006 (-.022, .002) -.006 .074 

Correlation between Initial 
Status and Rates of Change 
(To1 / Too1’2 x T1ll” 1 )  -.407 .253 (-.797, .173) -.443 .074 
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Turning to the results for the fixed effects in the level-2 equation for 
growth rates, we see that marginal posterior mean for Pio takes on a value 
of -0.07, and that the 95% marginal posterior interval excludes a value of 0. 
The value -0.07 suggests that on average, we expect to see a 0.07 decrease 
in a patient’s SCL-90 score for each month of treatment that elapses. The 
results for Pii suggest a negligible difference in rates of improvement 
between NDP and STAPP patients. Note that the posterior mean for pi1 is 
close to a value of 0, and that the value pi1 = 0 falls near the center of the 
95% marginal posterior interval. 

In terms of results for the variance-covariance components in the 
model, the results for zoi are of particular interest. Note that approximately 
92% of the mass of the marginal posterior distribution for zoi lies below a 
value of 0, thus providing some evidence (albeit modest evidence) of a 
negative relationship between initial status and rate of change (e.g., clients 
with high initial status values tend to exhibit more rapid rates of decline in 
their SCL-90 scores). (Note that the column in Tables I, I1 and I11 labelled 
”Prop. > 0” denotes the proportion of values among the set of 60,000 
values generated for a parameter that exceed a value of 0. These 
proportions constitute highly accurate estimates of posterior 
probabilities.) In using MCMC techniques, one can also readily obtain the 
marginal posterior distributions of parameters that are combinations of 
other parameters in one’s model. Thus using values generated in M cycles 
of the Gibbs sampler to simulate marginal posteriors of interest, and 
setting M to a large value, the empirical distribution of the values zio(V[ 
~oolR(Q ~ 1 1 ~ / ~ ( 0 ]  (i=l,.. .., M )  provides us with an accurate approximation of the 
marginal posterior distribution of the correlation between initial status 
and rate of change for patients within the two treatment groups. As can be 
seen in Table I, the mean of the resulting posterior takes on a value of 
approximately -0.41, and over 92% of the posterior lies below a value of 0. 

Model I1 

Though the results for Model I point to very little difference in 
initial status between STAPP and NDP clients, we now employ initial 
status (mi) as a latent variable predictor in the level-2 equation for growth 
rates. This will enable us to illustrate a potentially important use of initial 
status as a latent variable predictor of change in intervention settings, i.e., 
assessing the relative effectiveness of interventions on rates of change 
holding constant initial status. 



We now pose the following latent variable regression HM. We 
employ the same level-1 model as in Equation 2. At level-2, we specify the 
following model: 

In the first equation in the level-2 model, the individual initial status 
parameters are modeled as a function of a grand mean (i.e., poo). The 
random effects in the first equation now represent deviations in initial 
status from the grand mean (i.e., Uoi = mi - poo), and ZOO captures the 
variance in the Zoi around the grand mean. 

Note importantly that in contrast to Model I, 7toi now appears as a 
predictor in the level-2 equation for rates of change. In this model, pi1 

represents the expected difference in rates of change between NDP and 
STAPP patients holding constant initial status. The parameter b is the 
regression coefficient for the latent predictor mi. b is a pooled slope for 
patients in the NDP and STAPP treatment groups that captures the 
expected change in growth rate when initial status increases one unit. 

The parameter P i 0  represents the expected rate of change for a 
STAPP patient (i.e., TRTr= 0) with an initial status value of 0. To give pio a 
more meaningful interpretation, we can center mi around the grand mean 
for initial status as follows: 

In this model, PIO now represents the expected rate of change for a STAPP 
patient whose initial status value is equal to the grand mean. 

The variance parameter in the level-2 equation for growth rates 
(i.e., 711) represents the amount of variance in growth rates that remains 
after taking into account initial status and treatment group membership. 
Since we are conditioning on initial status in the level-2 model for growth 
rates (i.e., n1i I ZOi , TRTi ), we assume that COV(Uoi, Uli) = 0. Assumptions of 
this kind are made routinely in the SEM growth modeling framework in 
settings where initial status is employed as a predictor of rates of change. 



Table 11: Marginal Posterior Distributions for Fixed Effects and Variance Components in 
Model 11. 

~~~ ~~ 

Mean SD 95% Int. Median Prop.>O 

Fixed Effects : 
Model for Initial Status (7rd 

Grand Mean (pool .913 .lo0 (.715, 1.108) .912 1.000 

Model for Rates of Change ( 7 r 1 i l  

STAPP (pie) -.071 .018 (-.107,-.036) -.071 .999 

NDP/STAPP Contrast (pI1) .004 .020  (-.035, .043) .004 .572 

Init. Status Effect(b) -.067 .035 (-.130, .007) -.069 .034 

Variance Components : 

Within-Person Error (a2) .061 .017 ( .035,  .lo21 .058 

Random Effects Variance for 
Initial status (TOO) .149 .067 (.064, .307) .137 

Random Effects Variance for 
Rates of Change (zl1) .0010 .0006 (.0003,.0024) .0009 

As can be seen in Table 11, the resulting posterior mean for the 
NDP/STAPP difference in growth rates holding constant initial status is 
extremely close to a value of 0. We also see that the marginal posterior 
mean for b takes on a value of -0.067, which implies that a 1 unit increase 
in initial status implies a decrease in rate of change in SCL-90 scores (i.e., a 
more rapid decrease in distress) of 0.067 units per month. While a value 
of 0 lies within the upper boundary of the 95% interval for b, note that 
only approximately 3.4% of the mass of the posterior lies above a value of 
0. Results for 010 imply an expected rate of change of -0.071 for a STAPP 
patient with an initial status value equal to the grand mean. 

Model ID 

The above analyses point to the conclusion that the' effects of 
STAPP and NDP on rates of change in SCL-90 scores do not differ. 
However, when we examine the observed SCL-90 trajectories for STAPP 
and NDP patients, we see that rates of change among the STAPP patients 
tend to be fairly similar regardless of where patients start, i.e., irrespective 



of their pre-intervention SCL-90 scores (see Figure 2a). In contrast, in 
Figure 2b we see that NDP patients with high pre-intervention scores tend 
to exhibit rapid decreases in distress, while those with relatively lower 
pre-intervention scores tend to progress at substantially slower rates. This 
suggests that NDP may be more effective for patients with high initial 
levels of distress while STAPP may be more effective for patients with 
moderate initial levels of distress. 

To investigate this possibility we expand Equation 5 to include an 
Initial status x Treatment interaction term: 

where P i 1  and bi represent, respectively, the main effects of treatment and 
initial status on rates of change, and where b2, the parameter of primary 
interest, captures the interaction between initial status and treatment on 
rates of change. 

43.6 -0.4 -0.2 0.0 0.2 
tQ 

Figure 3. The Marginal Posterior Distribution of the Initial x Treatment Interaction 
Effect (b2) 



Based on the equation for growth rates in the above level-2 model, 
it can be seen that the expected rate of change for STAPP patients (TRTi= 
0) is as follows: 

For NDP patients, the expected rate of change is: 

In Table 111, we see that the mean of the resulting posterior 
distribution for b2 takes on a value of -0.137 and that the 95% interval for 
b2 includes only negative values (see also Figure 3). Note also that 
approximately 98% of the mass of p@nI y) lies below a value of 0. These 
results point strongly to an interaction between initial status and 
treatment on rate of change. 

Table 111: Marginal Posterior Distributions for the Fixed Effects and Variance 
Components in Model I11 

Mean SD 95% Int. Median Prop.>O 

Fixed Effects : 
Model for Initial Status (noIL - 

Grand Mean (Po,) .923 .098 (.728, 1.111) .924 1.000 

Model for Rates of Change (nli) -- 

STAPP (Pie) -.073 -017 (-.106,-.041) -.073 . O O O  

NDP/STAPP Contrast (P l l )  .004 ,022 (-.039, .048) .004 .570 

Initial Status Effect(b1).003 .053 (-.085, .124) -.002 .479 

Init. Status x Treatment 
(b2 1 -.137 -071 (-.291,-.012) -.132 .016 

Variance Components : 
Within-Person Error (0 ' )  .057 .015 (.034, .094) .055 

Random Effects Variance 
for Initial Status ( T ~ ~ )  .141 .060 (.060, .290) .129 

Random Effects Variance 
for Rates of Change (q1) .0008 .0004 ( .0002, .0019) .0007 
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To help interpret the results of this analysis, we use the resulting 
posterior means of the fixed effects to compute expected rates of change 
for STAPP patients and for NDP patients whose initial status values are 
one standard deviation above or below the grand mean. First, since zoo 
represents the variance in initial status values around the grand mean, 
then (mi - Boo)= zooin represents the grand-mean centered initial status value 
for a person whose initial status value is one standard deviation above the 
mean. Similarly, (mi - Boo)= -zooin represents the centered initial status 
value for a person whose initial status value is one standard deviation 
below the grand mean. Since the posterior distribution for zoo is somewhat 
skewed (see Table 111), the median of this distribution (0.129) provides us 
with a sensible estimate of zoo for the purpose at hand. 

For STAPP patients whose initial status is one standard deviation 
above average ((Zoi - poo)= (0.129)’R = 0.36), the expected rate of change 
based on our fitted model is: 

E ( ~ l i  I TRTi= 0, [mi - 0001 ~0.36) = -0.073 + 0.003(0.36) 
= -0.072. (9) 

where -0.073 and 0.003 are the marginal posterior means of Pio  and bi, 
respectively. 

For NDP patients whose initial status is one standard deviation 
above average, the expected rate of change is: 

E(ZIZ I TRTF 1, [ZOZ- BOO] = 0.36) = 

(-0.073 + 0.004) + (0.003 + [-0.137])(0.36) = -0.117, (10) 

where -0.073, 0.004, 0.003 and -0.137 are the marginal posterior means of 
~ I O ,  pli,bi and bz, respectively. 

Thus among patients whose initial status value is one standard 
deviation above the grand mean, NDP patients are expected to improve at 
an appreciably more rapid rate than STAPP patients. In Figure 4, we see 
that after 6 months of treatment, SCL-90 scores are expected to be 
approximately .27 points lower for NDP patients than for STAPP patients. 

below average ((mi - Boo) = (0.129)’” = -0.36), the expected rate of change 
based on our fitted model is: 

For STAPP patients whose initial status is one standard deviation 

E(Z1i I TRTi= 0, [mi - BOO] -0.36) = -0.073 + 0.003(-0.36) 
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= -0.074. (11) 

For NDP patients whose initial status is one standard deviation 
below average, the expected rate of change is: 

E ( ~ w  I TRTi= 1, [nor- pool = -0.36) = (-0.073 + 0.004) + (0.003 + [-0.137])(-0.36) 
= -0.117. (12) 

1.4 - 
severe (> 1 .O) 

1.2 - 

- - - initial status 1 SD below avp. 

-initial status 1 SD above avg. 

- - - - initial status 1 SD below avg. 
(STAPP) 

\ 
1 -  . 

0 . 8 .  

' 0.6 . 
3 

I -  - - - - -  -*.:- - - I I I I I +..\ 
z -. 0.4 ~ 

4..  z --. 
* z ,  asymptomatlc(c.20) 

-. 0.2 . 

0 7  
0 1 2 3 4 5 6 

month 

Figure 4. Interaction between Initial Status and Treatment on Rates of Change 

As can be seen, the expected rate of change for low initial status 
STAPP patients (-0.074) is extremely similar to the expected rate for high 
initial status STAPP (-0.072) patients. Moreover, among low initial status 
patients, STAPP patients are expected to improve at substantially more 
rapid rates than NDP patients (-0.074 versus -0.021). As can be see in 
Figure 4, the expected rate of change for low initial status NDP patients is 
quite slow. After 6 months of treatment, SCL-90 scores for low initial 
status patients are expected to be approximately 0.30 points lower for 
STAPP patients than NDP patients. 

To study the sensitivity of our results to possible outlying time- 
series observations or outlying individuals, we re-analyze the data 
employing heavy-tailed distributional assumptions at levels 1 and 2 (i.e., t 
distributional assumptions with 4 degrees of freedom): &ti - t(0, 02, 4); Uoi - 
t(0, zoo, 4); and U1i - t(0, zii, 4). The results that we obtain are extremely 
similar to those obtained under normality assumptions. The resulting 



marginal posterior mean for the interaction effect 0 3 2 )  takes on a value of 
-0.132, and we obtain a 95% interval for b2 that includes only negative 
values (i.e., -0.301, -0.006). 

While Models I and I1 point to virtually no difference in the 
effectiveness of STAPP and NDP, Model I11 points to NDP being more 
effective for patients whose initial status values are relatively high and to 
STAPP being more effective in the case of patients whose initial status 
values are relatively low. 

Discussion 

An important implication of the above analyses is that the ability to 
fit models that contain Initial Status x Treatment interaction terms 
encourages us to search for potentially important interactions that might 
otherwise go unnoticed. Our model-fitting approach is based on the use 
of MCMC techniques, which provide a viable means of obtaining 
estimates and standard errors for parameters of interest in numerous 
complex modeling settings. A key advantage of utilizing MCMC is that 
we are able to estimate coefficients in latent variable regressions directly 
as opposed transforming ML estimates of variance components and fixed 
effects in standard HMs. Various possible modeling extensions based on 
this estimation approach are as follows. 

1. As noted above, our MCMC-based approach makes it possible to 
specify interactions between initial status and continuous predictors in 
modeling rates of change. This, in turn, potentially broadens the kinds of 
questions that we are able to address via analyses of the data from 
longitudinal educational surveys (e.g., NELS, ECLS), and from 
longitudinal studies of educational programs. For example, consider an 
intensive longitudinal study of an innovative remedial reading 
intervention, and that a key feature of the study is that children are 
randomly assigned to various versions of the program that differ in 
intensity i.e., in the number of minutes of remedial instruction per week). 
Thus, of particular interest are the effects of the intensity of treatment 
(INTENSITY) on rates of change, and the issue of whether, for example, 
differences in intensity are more consequential for those children who are 
most in need of the intervention (i.e., those children with markedly low 
initial status values). This implies a model for rates of change such as the 
following: 



Ln th~s  model, the key parameters of interest (i.e., bi and b2) can be 
estimated directly via MCMC. 

2. Building on 
Burstein's work on multilevel analysis (1980), relationships of substantive 
importance (e.g., the relationship between initial status and rate of 
progress) can vary substantially across key organizational units (e.g., 
classrooms, schools). For example, in some schools, where a student starts 
with respect to reading achievement may be extremely consequential in 
terms of how rapidly he or she progresses (e.g., those students who start 
high might progress rapidly, whle those who start low might progress 
very slowly). In other schools, however, where a student starts may be 
less consequential in terms of how quickly he or she progresses. For 
example, in some schools, all children, regardless of their initial status, 
may progress rapidly. It therefore becomes important to examine how 
differences in various school policies and practices (e.g., differences in 
instructional materials, in the allocation of instructional time, in types and 
amounts of remedial services) affect the relationship between where 
students start and their subsequent rates of progress. l k s  can be 
accomplished through the use of three-level HMs, which can be estimated 
via our MCMC approach. 

Student progress of course occurs in school settings. 

3. Our MCMC-estimation strategy can be used in studies in which 
primary interest centers on the relationship between growth in different 
domains. For example, one can specify and fit models in which rate of 
change in word recognition skills is used as a predictor of subsequent rate 
of change in reading comprehension. 

Our work in this paper has implications for the development of 
educational indicators. In particular, examining relationshps between 
where students start and how rapidly they progress, and examining 
interactions involving various student background characteristics (e.g., 
SES, gender), help provide a sense of the kinds of students in a school who 
are benefiting and those who are not. %s is the focus of a forthcoming 
deliverable. 
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